
International Journal of Plasticity 67 (2015) 148–170
Contents lists available at ScienceDirect

International Journal of Plasticity

journal homepage: www.elsevier .com/locate / i jp las
A crystal plasticity FE model for deformation with twin
nucleation in magnesium alloys
http://dx.doi.org/10.1016/j.ijplas.2014.10.005
0749-6419/� 2014 Elsevier Ltd. All rights reserved.

⇑ Corresponding author at: 3400 N. Charles St., Baltimore, MD 21218, United States. Tel.: +1 410 516 7833; fax: +1 410 516 7473.
E-mail address: sghosh20@jhu.edu (S. Ghosh).
Jiahao Cheng, Somnath Ghosh ⇑
Departments of Civil and Mechanical Engineering, Johns Hopkins University, United States

a r t i c l e i n f o a b s t r a c t
Article history:
Received 2 July 2014
Received in final revised form 27 September
2014
Available online 22 October 2014

Keywords:
A. Dislocations
A. Twinning
B. Crystal plasticity
B. Polycrystalline material
C. Finite elements
Magnesium alloys exhibit complex deformation related mechanical behavior, viz. plastic
anisotropy, tension–compression asymmetry and premature failure. Their origins are in
the underlying heterogeneous deformation due to dislocation slip and micro-twin forma-
tion on different crystallographic systems. Reliable prediction of mechanical response and
failure is predicated upon the ability of computational models of polycrystalline micro-
structures to accurately simulate such deformational heterogeneity and localization. In this
paper a physically-motivated non-local crystal plasticity finite element (CPFE) model is
developed for dislocation-mediated heterogeneous deformation of single and polycrystal-
line Mg alloys leading to micro-twin nucleation. The CPFE model uses image-based virtual
polycrystalline microstructures for its simulations and is able to effectively represent stress
and deformation patterns in the intra- and inter-granular regions. A micro-twin nucleation
criteria is proposed from energy-partitioning following the dislocation dissociation pro-
cess. The CPFE simulations of polycrystalline microstructures show satisfactory agreement
with experimental observations. CPFEM studies on large grain aggregates using this crite-
ria, reveal the critical role of crystallographic orientation and grain boundaries on micro-
twin formation.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

The quest for low density, high strength and durable materials in high performance automotive and aerospace applica-
tions has resulted in magnesium alloys as candidate materials with high potential (Bettles and Gibson, 2005; Kainer, 2003).
The density of magnesium is about 23% that of steel and 66% that of aluminum, while its weight for equivalent bending stiff-
ness is 62% less than steel and 23% less than aluminum. Being among the lightest of structural metals with high stiffness and
strength at a range of temperatures, these alloys can offer considerably increased component strength to weight ratio. These
desirable properties can have the ultimate consequences of significant savings in energy consumption and reduction in CO2

emissions. An important consideration in the processing and high performance industrial applications of Mg alloys is their
deformation behavior and failure characteristics at a range of strain rates and temperatures. Of particular interest is their
ductility properties, e.g. their behavior in forming processes like extrusion or rolling, or under impact loads as in crashwor-
thiness tests. Understanding the physics of the plastic deformation and failure of magnesium alloys is therefore essential for
tailoring their ductility, especially at room temperatures.
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A complicating phenomenon of magnesium and its alloys (e.g., AZ31) is their deformation induced anomalous mechanical
behavior (Kaiser et al., 2003; Bohlen et al., 2007; Barnett, 2007a,b; Brown et al., 2007; Ma et al., 2011; Kadiri et al., 2013).
These materials possess low-symmetry hexagonal closed packed (hcp) crystallographic structure, an attribute that leads
to pronounced anisotropy in mechanical properties, e.g. tension–compression asymmetry of the yield strength. Low symme-
try results in a variety of slip systems for the hcp crystalline lattice, shown in Fig. 1. At low temperatures, the critical resolved
shear stress (CRSS) is much lower for basal slip ð0001Þ h11 �20i, than it is for prismatic f10 �10g h11 �20i or pyramidal
f11 �22g h11 �23i slip systems. Only the basal hai slip can occur under low applied stresses. Any deformation involving
changes in the hci direction ensues a competition between the high CRSS hc þ ai slip systems and the less understood
micro-twin mechanisms (Duygulu and Agnew, 2005). The myriad of interactions among slip and twin systems lead to com-
plex plastic behavior, involving plastic anisotropy, tension–compression asymmetry and premature failure. Local stress and
dislocation concentrations at locations of microstructural heterogeneities in polycrystalline aggregates close to grain bound-
aries with strong texture and grain size distribution are responsible for this behavior. It is important to develop physics-
based models of deformation and micro-twinning in Mg alloys with the goal of understanding the effect of microstructure
on failure.

Major computational approaches have been developed for continuum-scale simulation of polycrystal aggregates of Mg
alloys. The elasto-visco-plastic self-consistent or EVPSC method started in (Hutchinson, 1976), evolved in (Molinari et al.,
1987) and was further developed in (Lebensohn and Tome, 1993, 1994) to account for large anisotropic viscoplastic defor-
mation. Features like dislocation slip inside a twin band, detwinning, effect of solid solution and dislocation transmutation
caused twin hardening have been included for hcp crystals in recent developments (Proust et al., 2009; Wang et al., 2012;
Raeisinia and Agnew, 2010; Kadiri and Oppedal, 2010; Oppedal et al., 2012). In the EVPSC scheme, each grain is treated
as an ellipsoidal inclusion embedded in a homogeneous medium representing the averaged behavior of all other grains,
while preserving equilibrium and compatibility. It is an efficient method for modeling the behavior and texture evolution
of large grain aggregates. Grains however are not in direct interaction with their neighbors, and the effect of grain boundary,
grain shape and stress heterogeneity inside each grain are not explicitly represented. Crystal plasticity finite element models
or CPFEM have been implemented to model deformation in Mg alloys in (Staroselsky and Anand, 2003; Graff et al., 2007;
Izadbakhsh et al., 2011, 2012; Zhang and Joshi, 2012; Abdolvand and Daymond, 2013). A non-local constitutive model
has been developed by (Ma et al., 2006) for CPFEM with the emphasis on accumulation of geometrically necessary disloca-
tions (GNDs).

Modeling deformation twinning is a key to effective failure prediction for Mg alloys. The formation of micro-twins is facil-
itated by the low number of easy slip systems in hcp metals. However, a number of important fundamental questions
remain, e.g. how does a micro-twin nucleate, how the twin boundary migrate or when does a grain saturate with accommo-
dating twins. The formation of micro-twins by the nucleation and glide of twinning dislocations are not on close packing
planes as discussed in (Serra et al., 1991). The glide of twin dislocations not only provides shear deformation but also
requires a collaborative shuffling of atoms over more than one crystallographic plane (Hirth and Lothe, 1982). This non-
planar atomic shuffling, together with twin shear, reorients the initial crystallographic lattice in a mirror-symmetry and
thickens the twin. Two types of twin nucleation theories, refereed to as homogeneous and heterogeneous theories, have been
proposed for hcp metals. The homogeneous theory (Koehler et al., 1954) assumes nucleation from a perfect crystal lattice,
while the heterogeneous theory (Mendelson, 1970; Capolungo and Beyerlein, 2008; Beyerlein and Tome, 2010;
Ghazisaeidi and Curtin, 2013) considers the effect of existing defects and microstructure on twinning. The homogeneous
models require very high stress levels, close to material’s theoretical strength, which can only happen in extreme loading
conditions. The heterogeneous models are more suited for micro-twinning under lower-strain rate and quasi-static loading
conditions. Beyerlein and Tome (2010) considered the twin nucleation from defects at low angle grain boundaries.
Fig. 1. Schematic showing: (a) active slip systems and (b) twin systems in hcp magnesium alloys.
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Thompson and Millard (1952) introduced a ‘‘pole mechanism’’, which considers the coplanar dissociation of hci lattice
dislocations as a source of twinning. This was extended in (Mendelson, 1970) using linear elasticity theory to incorporate
the dissociation of a hai; hci or hc þ ai dislocation into one or more glissile twinning dislocation loops and a sessile stair-
rod dislocation, lying between the slip plane of the original dislocation and twin planes. In (Capolungo and Beyerlein,
2008) it has been shown that it is not possible to form a stable twin unless it is at the head of a dislocation pileup. Studies
on the dissociation of hci and hc þ ai type dislocation into n layer f10 �12g twins in (Ghazisaeidi and Curtin, 2013) have found
them to be feasible mechanisms for nucleation of f10 �12g tension twins.

The present paper develops a CPFEM model for dislocation-mediated heterogeneous deformation of single and polycrys-
talline Mg alloy microstructures that leads to micro-twin nucleation. The non-local model implemented in this work cap-
tures local stress concentrations near soft-hard grain boundaries due to accumulation of geometrically necessary
dislocations. In Section 2 a crystal plasticity constitutive model is developed for dislocation glide and accumulation that
is numerically implemented in a CPFEM framework. Section 3 discusses the method of calibrating model parameters using
genetic algorithms from experimental data on single crystal pure Mg. The CPFEM model is validated for real microstructures
of polycrystalline Mg alloy AZ31 in Section 4. Section 5 is devoted to the development of a micro-twin nucleation in poly-
crystalline microstructures and detailed study on the effect of microstructure on twin nucleation. The paper summarizes the
developments in Section 6.

2. Crystal plasticity constitutive model of slip-mediated deformation

Mg alloys, e.g. the wrought alloy AZ31, possess low-symmetry hexagonal closed packed (hcp) crystallographic structure,
consisting of 5 different families of slip systems, namely the basal hai, prismatic hai, pyramidal hai, first order pyramidal
hc þ ai and second order pyramidal hc þ ai with a total of 30 slip systems. Pronounced differences are generally found in
the critical resolved shear stresses and strain-hardening rates in the different slip systems, causing strong anisotropy in
mechanical properties such as tension–compression asymmetry of the yield strength. Experimental observations for Mg
alloys e.g. in (Kelley and Hosford, 1968) have indicated that only 12 slip systems are generally active, while others like
the first-order pyramidal slip system tend to dissociate and are rarely active in dislocation glide (Li and Ma, 2009). Conse-
quently for efficiency, the present model considers 3 basal slip modes ð0001Þ h11 �20i, 3 prismatic slip modes
f10 �10g h11 �20i and 6 second order pyramidal hc þ ai slip modes f11 �22g h11 �23i in 12 slip systems (Graff et al., 2007;
Ma et al., 2012). A schematic of the slip and twin systems in the hcp magnesium alloys is shown in Fig. 1. The crystal plas-
ticity constitutive model is adapted from the size and time dependent, finite strain models that have been developed for Ti
alloys in (Hasija et al., 2003; Deka et al., 2006; Venkataramani et al., 2007, 2008; Anahid et al., 2011; Ghosh and Chakraborty,
2013). Expressions for the slip system deformation resistance evolution and back-stress evolution in the phenomenological
power-law model are enhanced by more physics-based thermally activated obstacle to slip and athermal obstacles, which
correspond to the cutting and passing stress barriers respectively (Keshavarz and Ghosh, 2013). The crystal plasticity model
accounts for microstructural features such as hardening due to statistically stored dislocation and geometrically necessary
dislocation densities. Furthermore, the modeling of deformation twinning in polycrystalline microstructures is incorporated
in Section 5.

2.1. Crystal plasticity constitutive relations

Following conventional developments of crystal plasticity theory in (Peirce et al., 1983, 1982), the total deformation gra-
dient is assumed to admit a multiplicative decomposition as:
F ¼ FeFp; det Feð Þ > 0 ð1Þ
where F is the deformation gradient tensor, Fe is its elastic component that describes stretching and rotation of the crystal
lattice, and Fp is its incompressible plastic component, i.e. detðFpÞ ¼ 1. The decomposition admits an anholonomic
unstressed intermediate configuration Bi associated with the population and motion of crystal defects, for which Fe is asso-
ciated with the driving stress that brings Bi to the current configuration Bc. The stress–strain constitutive equation in the
reference configuration is written in terms of the second Piola-Kirchhoff stress tensor S and its work-conjugate Lagrange–
Green strain tensor Ee as:
S ¼ C : Ee where Ee ¼ 1
2
ðFeT Fe � IÞ ð2Þ
where C is a fourth order anisotropic elasticity tensor. Plastic deformation of magnesium alloys at moderate strain-rates is
predominantly caused by dislocation glide on selected slip systems and micro-twin evolution. The flow rule, governing evo-
lution of plastic deformation due to dislocations, is expressed in terms of the plastic velocity gradient Lp as:
Lp ¼ _FpFp�1 ¼
Xnslip

a

_casa
0 ð3Þ
where _ca is the slip rate on the a slip system and nslip is the total number of active slip systems. The Schmid tensor
associated with a-th slip system sa

0 is expressed in terms of the slip direction ma
0 and slip plane normal na

0 in the unrotated
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reference configuration Bi as sa
0 ¼ma

0 � na
0. Combining the models in (Anahid et al., 2011; Ghosh and Chakraborty, 2013;

Keshavarz and Ghosh, 2013) the plastic slip rate _ca on the a-th slip system has a power law dependence on the resolved
shear stress sa from the far-field stress, and the slip system deformation resistances overcoming the local thermal and ather-
mal barriers. This can be expressed as:
_ca ¼ _ca
0
sa � sa

a

sa
�

���� ����1
m

signðsa � sa
aÞ ð4Þ
Here, the temperature-dependent critical shear resistance sa is assumed to be comprised of a thermally activated obstacle
to slip sa

� and a part due to the athermal obstacles sa
a . The athermal resistance arises from the long-range internal stress field

between parallel dislocation lines or from grain boundaries, while the thermal shear resistance is due to local obstacles
caused by particles, dislocation jogs or forest dislocations. sa

a and sa
� correspond to the passing and cutting stress barriers

respectively, with the driving force for dislocation motion on the slip system being the difference between the resolved shear
stress and athermal shear resistance. The term sa � sa

a is the local effective driving force applied on a dislocation line. The
resolved shear stress on a slip system sa is derived as:
sa ¼ ðFeT FeSÞ : ðsa
0Þ ð5Þ
The exponent m corresponds to the strain-rate sensitivity, _ca
0 is the reference slip rate for a system.

The power law model of Eq. (4) is the consistent with the activation energy based model (Kock et al., 1975) of the form:
_ca ¼ _ca
0 exp � 1

kBT
DF� 1�

sa � sa
a

�� ��
sa
�

� �p" #q( )
signðsa � sa

aÞ ð6Þ
where parameters p and q correspond to the shape of local obstacles and DF� is the thermal activation energy. For cuboidal

shapes of local obstacles, p ¼ q ¼ 1. Moreover, for moderate rates of plastic deformation regime the factor ðs
a�saa Þ
sa�

is of the

order Oð1Þ, for which the exponential term exp
sa�saaj j

sa�
� 1

� �
can be expanded in a series while retaining only the linear term

sa�saaj j
sa�

. Correspondingly, the exponent in Eq. (4) may be equated as 1
m ¼

DF�
kBT , which for magnesium and its alloys has a value

typically larger than 30 (Kim et al., 2000). In the present work, an isothermal assumption is made, for which the value of the
power-law exponent 1

m is constant.

2.1.1. Evolution of slip system resistance
The evolution of shear resistance on individual slip systems is governed by two types of dislocations, viz. statistical stored

dislocations (SSDs) and geometrically necessary dislocations (GNDs) (Ashby, 1970; Ma et al., 2006; Ghosh and Chakraborty,
2013). The accommodation of SSDs, which correspond to homogeneous plastic deformation that is characterized by vanish-
ing net Burgers vector, is the result of random trapping and multiplication process in chance encounters. The existence of
GNDs corresponds to the storage of polarized dislocation densities, necessary to accommodate the crystal lattice curvature
such as in single crystal bending or near polycrystalline grain boundaries. Phenomenological hardening laws, proposed in
(Keshavarz and Ghosh, 2013), are assumed for the evolution of thermal and athermal shear resistances contributing to
the overall shear resistance. The thermal shear resistance sa

� accounts for the effect of forest dislocations normal to a slip
plane, while the athermal shear resistance sa

a reflects the effect of parallel dislocations in the slip direction ma. They are con-
stituted of three components, viz. the initial shear resistance and contributions due to the evolution of the SSDs and GNDs
respectively, i.e. sa

a=� ¼ sa
a=�;0 þ sa

a=�;SSD þ sa
a=�;GND. For SSDs, the rate of evolution of these resistances are expressed as:
_sa
a;SSD ¼

XN

b¼1

hab
a

_cb sin na; tb
� ��� �� ð7aÞ

_sa
�;SSD ¼

XN

b¼1

hab
� _cb cos na; tb

� ��� �� ð7bÞ
where na is the normal to the slip system plane a and tb is the dislocation line tangent vector for edge dislocation on the slip
plane b. It is derived as the cross product of the slip direction and slip plane normal, i.e. tb ¼mb � nb. Eq. (7a) corresponds to
the projection of b slip system dislocations parallel to the a slip plane, while Eq. (7b) projects them on a plane normal to a
slip plane. In this work, SSDs due to edge dislocations are considered only (Ma et al., 2006; Keshavarz and Ghosh, 2013). To
incorporate the contribution of screw dislocations in SSDs e.g. in (Castany et al., 2008) for Ti6Al4V alloys, the direction of the
dislocation line tangent vector should be mb, and the projection relations in Eqs. (7) should additionally incorporate the pro-
jection angle corresponding to na;mbð Þ. Moduli hab

� and hab
a describe strain hardening rate due to both self and latent hard-

ening on the slip system a due to slip on the slip system b. The hardening moduli for athermal and thermal shear resistances
are assumed to be identical in this work, i.e.
hab
a ¼ hab

� ¼ qabhb
; ðno sum on bÞ ð8Þ
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Here hb is the self-hardening coefficient on the slip system b and qab is a matrix describing latent hardening. The evolution of
self hardening rate is expressed as:
hb ¼ hb
ref 1� sb

sb
sat

�����
�����

r

sign 1� sb

sb
sat

 !
ð9Þ
where the exponent r is a material constant and sb
sat is the reference value of saturation stress on b slip system. The magni-

tude of the total shear resistance is given as sb ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðsb

aÞ
2 þ ðsb

�Þ
2

q
.

The consideration of hardening due to geometrically necessary dislocations or GNDs is important for hcp crystals that
exhibit anisotropy due to a high degree of heterogeneity between different slip systems. Grains with different orientations
have significant differences in response under loading that result in lattice curvatures and accumulation of GNDs at grain
boundaries. They are necessary for providing additional stresses to maintain compatibility at grain boundaries. The compo-
nents of GNDs may be derived from the Nye’s dislocation density tensor K, which measures the incompatibility in the inter-
mediate configuration and is expressed as (Arsenlis, 2001):
K ¼ �ð$X � FpT Þ
T

ð10Þ
where $X is the gradient operator with respect to the reference coordinates. Both edge and screw components of GNDs con-
tribute to K in the incompatible intermediate configuration (Ma et al., 2006). Thus the GNDs on each slip system are decom-
posed into three groups, viz. one group of screw components qa

GND;s with their line tangent vector parallel to the slip direction
ma, and two groups of edge components qa

GND;en and qa
GND;et with their respective line tangent vectors parallel to slip plane

normal na and ta ¼ma � na. This may be written as:
K ¼
Xnslip

a¼1

qa
GND;sb

a �ma þ qa
GND;etb

a � ta þ qa
GND;enba � na ð11Þ
where nslip ¼ 12, and ba is the Burgers vector on the slip system a. Eqs. (10) and (11) constitute an under-constrained prob-
lem, in which 36 independent components of qa

GND, viz. 12 qa
GND;s, 12 qa

GND;et and 12 qa
GNDen need to be solved from 9 equations.

Eq. (11) may be written in a matrix form as:
fbKg ¼ A½ �fqGNDg ð12Þ
where fbKg is 9� 1 vector form of the Nye’s dislocation density tensor K; A½ � is a 9� 36 linear operator matrix containing the
basis tensors ba �ma; ba � ta and ba � na, and fqGNDg is the 36� 1 vector column of GND components. Eq. (12) yields an
under-determined system of linear equations that has an infinite solutions, if any. Consequently, following discussions in
(Arsenlis and Parks, 1998), a minimization problem is solved for the L2 norm of the GND density (see below) subject to
the constraints of Eq. (12). The L2 norm is expressed as the sum of the squares of GND densities on each slip system as:
qGNDf gT qGNDf g ¼
X

a
qa

GND;s

� 	2
þ qa

GND;et

� 	2
þ qa

GND;en

� 	2
¼
X

a
qa

GND

� �2 ð13Þ
Geometric constraints posed in Eq. (12) allows only certain dislocations to exist on the slip planes, which is taken into
account by minimizing the functional of the form:
F qGNDf g; kf gð Þ ¼ fqGNDg
TfqGNDg þ kf gTð A½ �fqGNDg � fbKgÞn o

ð14Þ
Here kf g is a 9� 1 column vector containing components of the Lagrange multipliers. The stationarity conditions @F
@fqGNDg

¼ 0
and @F

@ kf g ¼ 0 yield the equation to be solved:
fqGNDg ¼ A½ �Tð A½ � A½ �TÞ
�1
fbKg ð15Þ
The GNDs contribute to slip system resistance through increase in the long-range passing stress due to the interaction of
mobile dislocations with parallel dislocations, as well as increase in cutting stress due to mobile dislocations cutting the for-
est dislocations perpendicular to the slip plane. Parallel and forest dislocation densities due to the GNDs may be expressed in
terms of the components as (Ma et al., 2006):
qa
GND;P ¼

Xnslip

b¼1

vab qb
GND;s sinðna;mbÞ

�� ��þ qb
GND;et sinðna; tbÞ

�� ��þ qb
GND;en sinðna;nbÞ

�� ��h i
ð16aÞ

qa
GND;F ¼

Xnslip

b¼1

vab qb
GND;s cosðna;mbÞ

�� ��þ qb
GND;et cosðna; tbÞ

�� ��þ qb
GND;en cosðna;nbÞ

�� ��h i
ð16bÞ
The coefficient vab describes the strengthening effect due to the interaction between a slip system and b slip system, e.g. in
the formation of dislocation locks. For hcp crystals vab is taken as 1 in this work. As noted in (Ma et al., 2006), Eq. (16) uses the
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absolute value of GND density without accounting for the sign of Burgers vector, which may result in a loss of the kinematic
hardening due to GNDs. The athermal and thermal shear resistances from GND hardening at time t are expressed as:
sa
a;GND ¼ c1Gba

ffiffiffiffiffiffiffiffiffiffiffiffiffi
qa

GND;P

q
and sa

�;GND ¼
Qa

slip

c2c3ba2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
qa

GND;F

q
ð17Þ
where the athermal shear resistance is from the long-range internal stress field between mobile dislocation lines on a slip
system and parallel GNDs and the thermal shear resistance arises from mobile dislocation cutting forest GNDs. Here G is the
shear modulus, c1 is a constant for passing stress, c2 is a constant for jump width, c3 is a constant for obstacle width, ba is the
magnitude of Burgers vector for a slip system and Qa

slip is the effective activation energy for dislocation slip. In this work, an
approximation that Qa

slip ¼ 10Gba3

is made for hcp crystals. Adding all contributions, the thermal and athermal shear resis-
tance with both SSD and GND hardening at time t are expressed as:
sa
a ¼ sa

a;0 þ
Z t0¼t

t0¼0

Xnslip

b¼1

hab _cb sinðna; tbÞ
�� �� dt0 þ c1Gba

ffiffiffiffiffiffiffiffiffiffiffiffiffi
qa

GND;P

q
ð18aÞ

sa
� ¼ sa

�;0 þ
Z t0¼t

t0¼0

Xnslip

b¼1

hab _cb cosðna; tbÞ
�� �� dt0 þ

Qa
slip

c2c3ba2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
qa

GND;F

q
ð18bÞ
The first terms corresponds to the initial shear resistance and the second terms are derived from the time integration of
Eqs. (7a) and (7b) for the rate of shear resistance due to SSDs.

It has been discussed in (Venkataramani et al., 2007) that the initial slip system resistance in a polycrystalline aggregate
depends on the grain size. The grain boundary acts as dislocation barrier and reduce the dislocation glide mean free path,
which in turn contributes to the hardness through increased initial slip system shear resistance. A Hall–Petch type relation
has been implemented in (Venkataramani et al., 2007) to augment the initial thermal shear resistance in (18) as:
ŝa
�;0 ¼ sa

�;0 þ
Kaffiffiffiffiffiffi

Dg
p ð19Þ
where Dg is the equivalent grain diameter and Ka ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2�mÞps�Gba

2ð1�mÞ

q
. Here m is the Poissons ratio, G is the shear modulus, ba is the

Burgers vector and s� is the barrier strength for the grain boundary, which is taken as s� ¼ 0:01G.

2.2. Numerical implementation of crystal plasticity constitutive model

The non-local rate-dependent crystal plasticity equations in Section 2.1 are implemented in a crystal plasticity FE (CPFE)
code, using an implicit time-integration scheme. The implicit scheme implements a two-step, staggered iterative approach
using the backward Euler time integration methods. In the first step, local stress components, deformation and state vari-
ables, e.g. Fp; _sa

a;SSD and _sa
�;SSD, are integrated from time t to time t þ Dt with a fixed GND density qGND at each integration point

using an iterative Newton–Raphson solver. In the second step the GND density qGND is updated by solving the non-local Eqs.
(10)–(12) in the neighborhood of each integration point. Upon achieving convergence in the two-step iteration process, the
Cauchy stress rij and elasto-plastic tangent stiffness matrix Cep

ijkl ¼
@Sij

@Ekl tþDt
are computed and passed on to the equilibrium

problem solver.

2.2.1. Time integration algorithm for integrating crystal plasticity constitutive equations
An implicit time integration algorithm is developed following the steps developed in (Hasija et al., 2003). In an increment

from t to t þ Dt, the algorithm seeks the solution of six nonlinear algebraic equations corresponding to the number of second
Piola–Kirchoff stress components. With known values of deformation variables at time t, viz. FðtÞ; FpðtÞ; sa

aðtÞ; sa
� ðtÞ, as well as

a prescribed deformation gradient Fðt þ DtÞ at time t þ Dt, the algorithm updates stresses, plastic strains and all deformation
state variables, with the GND density and its rate of hardening held fixed. After convergence is reached in this step, the GNDs
are updated and the procedure is repeated. Integrating Eq. (3) as:
Fpðt þ DtÞ ¼ Iþ
Xnslip

a¼1

Dcasa
0

 !
FpðtÞ ð20Þ
and substituting in Eqs. (1) and (2), yields the nonlinear equations for the updated second Piola–Kirchoff stress:
Sðt þ DtÞ ¼ Str �
Xnslip

a¼1

Dca Sðt þ DtÞ; sa
aðt þ DtÞ; sa

� ðt þ DtÞ
� �

Ba ð21Þ
where
Ba ¼ C :
1
2

Aðt þ DtÞsa
0 þ sa

0Aðt þ DtÞ
� �
 �

ð22aÞ

Aðt þ DtÞ ¼ Fp�T ðtÞFTðt þ DtÞFðt þ DtÞFp�1 ðtÞ ð22bÞ
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The nonlinear Eq. (21) is solved using Newton–Raphson iterative solver. For the i-th iteration the update in the second Piola–
Kirchoff stress is obtained as:
Siþ1ðt þ DtÞ ¼ Siðt þ DtÞ � @G
@S

�����1

i

GðSiðt þ DtÞÞ ð23Þ
where G Siðt þ DtÞ
� 	

is the residual defined from Eq. (21) as:
GðSiðt þ DtÞÞ ¼ Siðt þ DtÞ � Str þ
X
a¼1

DcaBa ð24Þ
The Jacobian matrix is:
@G

@Si
¼ Iþ

Xnslip

a
Ba � @Dca

@Si
ð25Þ
for which an analytical expression can be derived from Eq. (4). In this step of updating Sðt þ DtÞ and the increment of slip
system resistance from SSDs (_sa

a;SSD and _sa
�;SSD) the slip system resistance component from GNDs are held fixed.

2.2.2. Updating GNDs and related variables
The GNDs and associated variables are updated after reaching convergence in the solution of Eq. (23). In the hardening-

based CPFE framework, in which GNDs are not explicit variables, the GND density qGND is evaluated from the Nye’s disloca-
tion density tensor K using Eq. (15). K has been defined in Eq. (10).

Numerical evaluation of K requires computing the derivatives of the plastic deformation gradient at each integration
point of an element. The derivatives may be numerically determined at a given point in the interior of an element, from nodal
values of the variable, using element shape functions as:
@bF p
ij

@xk
¼
XNnode

a¼1

ðbF pÞ
a
ij
@Na

@xk
ð26Þ
Here ðbF pÞ
a
ij are components of the nodal values of the plastic deformation gradient and Na are the element shape functions.

This requires the values of ðbF pÞ
a
ij at the nodal points that should be determined from those element integration point. The

super-convergent patch recovery (SPR) method in (Zienkiewicz and Zhu, 1992) is deemed to be the most appropriate method
for this purpose. The SPR method evaluates nodal values within a super-convergent patch Xp by interpolating the variables
using a higher order (p) polynomial expansion within the patch, expressed as:
eF ðxÞpij ¼ PðxÞ½ � af gij ð27Þ
where eFðxÞpij represents higher order representations of plastic deformation gradient tensor components at a point x in the
patch, PðxÞ½ � is the interpolation matrix constituted of polynomial basis functions, e.g.:
PðxÞ½ � ¼ f1; x; y; z; x2; y2; z2; xy; yz; zx; . . .g
and af gij is the coefficient vector. A second order polynomial is used for the Fp field in this work. The coefficient vector is
obtained by least-squares minimization of the difference between the function in Eq. (27) and known FEM solution Fp

ij at ele-
ment integration points within the patch. The function to be minimized with respect to af gij is:
f ð af gijÞ ¼
XNIP

IP¼1

Fp
ijðx; y; zÞ � Pðx; y; zÞ½ � af gij

� 	2

IP
ð28Þ
where NIP is the number of integration points. The minimizing solution is given in (Zienkiewicz and Zhu, 1992) as:
af gij ¼ X½ ��1 yf gij ð29Þ
where
X½ � ¼
XNIP

IP¼1

Pðx; y; zÞ½ �TIP Pðx; y; zÞ½ �IP and ð30Þ

yf gij ¼
XNIP

IP¼1

Pðx; y; zÞ½ �TIPFp
ijðx; y; zÞIP
The nodal values of each component Fp
ij can be evaluated using Eq. (27). The super-convergent patches can be defined sep-

arately for each grain by selecting the appropriate surrounding elements. The selection of this patch is important to avoid the
ill-conditioning of the X½ �matrix because of the higher powers. Typically normalized coordinates are used in the construction
of Pðx; y; zÞ½ � (Zienkiewicz and Zhu, 1992) as:
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�x ¼ �1þ 2
x� xmin

xmax � xmin
; �y ¼ �1þ 2

y� ymin

ymax � ymin
; �z ¼ �1þ 2

z� zmin

zmax � zmin
ð31Þ
where subscripts max and min correspond to the maximum and minimum coordinates in the patch. The normalized nodal
coordinates lie within the bounds 1 6 �x 6 1; �1 6 �y 6 1, and �1 6 �z 6 1 for nodes within a grain. A weighted least-square
method is used in this work that can be used with large patches without discrimination. In this method, a weighting function
that decays with the distance from the node from which the patch is being set up is used. The minimizer function in (28) is
correspondingly modified as:
f ð af gijÞ ¼
XNIP

IP¼1

wIP Fp
ijðx; y; zÞ � Pðx; y; zÞ½ � af gij

� 	2

IP
ð32Þ
where an exponentially decaying weight is chosen as wIP ¼ expð�alÞ, with l being the distance from the integration point to
the target node in question and a being a constant taken as 1:5 in this work.

Finally components of the Nye’s dislocation density tensor in Eq. (10) at a point in an element are evaluated as:
Kij ¼ �jsr
@Fp

is

@Xr
¼ �jsr

XNnode

a¼1

@Na

@Xr
ðbF pÞ

a
is ð33Þ
where �irs is the permutation tensor.
The sequence of computational operations in the crystal plasticity constitutive update procedure is provided in Table 1.

3. Calibration of constitutive parameters from single crystal Mg experiments

Constitutive parameters to be calibrated in the low-symmetry hcp crystals include: (i) reference slip system shearing rate
_ca

0, (ii) initial shear resistance sa
�;0, (iii) hardening rate parameters hb

ref and r, (iv) reference saturation stress sb
sat , and (v) param-

eters related to GND hardening c1; c2 and c3. Results of experiments and simulations in (Graff et al., 2007) suggest major dis-
location activities in the basal hai, prismatic hai and 2nd order pyramidal hc þ ai slip systems for various deformation modes.
This results in a total of 18 parameters to be calibrated. The strain-rate sensitivity parameter m in Eq. (4) and elastic con-
stants have been experimentally measured in (Bhattacharya, 2006) and listed in Table 2. From a sensitivity analysis similar
to that in (Hasija et al., 2003), the parameters to-be calibrated are identified to affect three experimentally observed mac-
roscopic properties, viz. the initial macroscopic yield strength (ry), post yield slope (H) and macroscopic saturation stress
(rs). For each property, a genetic algorithm-based minimization is applied to determine constitutive parameters from the
experimental data. The corresponding minimization statement and objective function (Xie et al., 2004) are:
minimize
XM

i

XN

j¼1

Uexperiment
k �Usimulation

k ðXkÞ
� 	2

 !
8k ¼ 1;2;3 ð34Þ
In this equation, Uk; ðk ¼ 1;2;3Þ corresponds to an experimentally observed property. For example, U1 ¼ ry;U2 ¼ H and
U3 ¼ rs. Each property Uk is affected by a group of constitutive parameters Xi; i ¼ 1;2;3, i.e. Ui ¼ UiðXiÞ. The constitutive
parameter groups are: X1 ¼ ½sa

�;0; _c0�; X2 ¼ ½ha
ref ; r� and X3 ¼ ½sa

sat � is sensitive to /3. M corresponds to the number of compar-
ison experiments and N is the number of data points from each experimental result. Three experimental sets are selected for
rt of computational operations in constitutive update procedure.

A Update local stress and deformation variables from t to t þ Dt, with known F t þ Dtð Þ and other variables at time t
Calculate trial second Piola–Kirchhoff stress Str and slip-system RSS satr

using Eqs. (21) and (5); subsequently update slip rates and
deformation variables using Eqs. (6) and (7)
Obtain the starting iterate S1ðt þ DtÞ from Eq. (21)
For the i-th iteration step in the Newton–Raphson algorithm:

(a) Evaluate sai ¼ Si t þ Dtð Þ : sa
0 and update slip rates

(b) Update Siþ1ðt þ DtÞ ¼ Siðt þ DtÞ � @G
@S

���1
i GðSiðt þ DtÞÞ from Eqs. (22)–(25)

(c) Check for convergence: if no, go back to step að Þ; if yes, proceed to step iv.
Evaluate sa Siþ1ðt þ DtÞ

� 	
and update slip system shear resistance with SSDs hardening using Eqs. (7)–(9)

Check for convergence of SSDs: if no, go back to step iii and compute stress with updated slip system shear resistance; if yes, proceed to
step vi
Evaluate Fpðt þ DtÞ and execute step B
Calculate Feðt þ DtÞ ¼ Fðt þ DtÞFp�1 ðt þ DtÞ, Cauchy stress rðt þ DtÞ ¼ 1

detðFeðtþDtÞÞ F
eT ðt þ DtÞSðt þ DtÞFeðt þ DtÞ and C ¼ @S

@E tþDt

B Update non-local deformation variables related to GNDs
Evaluate Fpðt þ DtÞ using Eq. (20) and compute nodal value of Fpðt þ DtÞ using Eq. (27)
Compute Nye’s tensor using Eq. (33) and obtain GND density from Eq. (15)
Update slip system shear resistance with GND hardening using Eqs. (16) and (18)
Check for convergence in GNDs: if no, go to step A-iii with updated GNDs; if yes, proceed to step A-vii.



Table 2
Constitutive parameters for single crystal pure Mg; subscripts bas; pri and pyr correspond to basal, prismatic and 2nd order pyramidal slip systems respectively.

C11 (GPa) C12 (GPa) C13 (GPa) C33 (GPa) C44 (GPa)

59.40 25.61 21.44 61.6 16.4

m _c0 (s�1) r

0.02 0.0023 0.25

ðsa�;0Þbas
(MPa) ðsa�;0Þpri

(MPa) ðsa�;0Þpyr
(MPa)
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Fig. 2. Comparing simulation results with calibrated parameters with experimental data for single crystal pure Mg for loading in different directions. The
basal slip corresponds to ½2 �1 �12� direction.
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calibration using Eq. (34) and hence M ¼ 3. These experiments are all conducted at room temperature under quasi-static
strain-rates on bulk samples of single crystal pure Mg with nearly 100% purity. They are:

� Uniaxial compression test at 0.00016/s strain-rate along ½0001� axis in (Obara et al., 1973); loading orientation maxi-
mizes the resolved shear stress on 2nd-order pyramidal hc þ ai slip system.
� Uniaxial tension at 0.00006/s strain-rate along 1 �120

� 

direction in (Ando et al., 2010); loading orientation maximizes the

resolved shear stress on the prismatic hai slip system.
� Tension along 2 �1 �12

� 

direction, followed by compression along the normal direction to the extruded sheet plane at

0.0002/s strain-rate in (Bhattacharya and Niewczas, 2011); loading orientation maximizes the resolved shear stress on
the basal hai slip system.

Each of the three experiments correspond to a crystallographic orientation that favors only one slip system. Their loading
orientations ½0001�; 1 �120

� 

and 2 �1 �12

� 

are selected to maximize the resolved shear stress on the 2nd-order-pyramidal

hc þ ai, prismatic hai and basal hai slip systems, respectively. Results of calibration are shown in Fig. 2 and the values of
the calibrated parameters are given in Table 2. Note that the single crystal experiment in Fig. 2 had stopped before reaching
the saturation regime, as opposed to the polycrystal-based experiments in (Khan et al., 2011). Consequently the value of sa

sat

cannot be calibrated at this step, but should be determined directly from polycrystalline simulations. Fig. 2 shows that the
crystal plasticity model can capture the anisotropic plastic yielding and hardening effects in different loading directions very
well. The GND parameters are calibrated with polycrystalline AZ31 experiments in selected loading modes as discussed next.

4. CPFE simulation of constant strain-rate tests of polycrystalline AZ31 alloy

In this example, a crystal plasticity finite element (CPFE) model is developed to simulate response of the polycrystalline
AZ31 Mg alloy under constant strain-rate loading conditions. Various steps leading to the overall objective are discussed
next.
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4.1. 3D virtual microstructure reconstruction, meshing and mesh convergence

The CPFE simulations are conducted for statistically-equivalent virtual microstructures of the Mg alloy AZ31. These
microstructural domains are constructed using the DREAM.3D software (Groeber and Jackson, 2014) that is based on meth-
ods described in (Groeber et al., 2008a,b). Virtual microstructures are generated by matching morphological and crystallo-
graphic statistics with electron back-scattered diffraction (EBSD) data obtained from focused ion beam or FIB-based serial
sectioning experiments on the AZ31 alloy in (Mishra and Inal, 2013; Khan et al., 2011). The first step in virtual microstructure
synthesis involves characterization (Groeber et al., 2008a), where 3D polycrystalline microstructure data is first assembled
from aligned, 2D scanned images in the dual-beam FIB grain segmentation process. Following this, statistics of microstruc-
ture descriptors e.g. distribution functions of morphological parameters like grain volume, number of contiguous neighbors,
aspect ratio and surface-to-volume ratio, and crystallographic parameters such as orientation, misorientation and micro-
texture are generated. The correlation between each parameter and grain size is also investigated. The second step involves
using the distribution and correlation functions for generating statistically-equivalent synthetic 3D grain structures. A
sequence of modules, viz. (i) equivalent ellipsoidal grain generator, (ii) constrained grain packer, (iii) seed point generator,
(iv) constrained tessellation tool and (v) crystallographic orientation assignment is invoked for reconstructing virtual micro-
structures (Groeber et al., 2008b). The collection of these modules and the experimental characterization processes consti-
tute an automated methodology for simulating representative polycrystalline microstructures.

The DREAM.3D code (Groeber and Jackson, 2014) is used to generate a 70 lm� 70 lm� 70 lm microstructural repre-
sentative volume element or RVE containing 233 grains of the AZ31 alloy as shown in Fig. 3(a). Fig. 4 compares the statistical
distributions of two representative microstructural descriptors for the reconstructed virtual microstructure and the
FIB-EBSD generated 3D data respectively. The comparison of grain size (equivalent grain diameter or EGD) distribution in
Fig. 4(a) shows generally good agreement with the exception at the tails. The larger grains are not adequately represented
in this reconstruction. The comparison of distribution of number of contiguous neighbors for different grain-sizes in Fig. 4(b),
on the other hand, is generally quite satisfactory.

A mesh convergence study is conducted with constant strain tetrahedron (CST) elements prior to simulations with the
model. CPFE simulations of the microstructural RVE are conducted with the specimen loaded in uniaxial compression to a
total of 2% overall strain, in a direction that is normal to the extruded sheet plane (ND). Fig. 5(a) displays the results for
two mesh densities, viz. with 190,763 and 252,562 CST elements respectively. The loading direction stress r33 is plotted
along a section parallel to the z-axis at 2% strain. From the convergence of the models with two mesh densities, it is inferred
that the CPFE model with 190,763 CST elements provides sufficient resolution for simulations in this study.

Furthermore, a grain convergence study is conducted to validate the sufficiency of the number of grains in the RVE (233
grains in this study) for a meaningful analysis. Two additional virtual microstructures containing 60 and 467 grains are gen-
erated from the aforementioned EBSD-FIB scanning results using DREAM.3D. Uniaxial compression tests are simulated with
loading applied along ND direction and the results are plotted in Fig. 5(b). The results suggest that for the given microstruc-
tural statistics, results for the 233 and 467 grains exhibit convergence. Thus the analysis with the 233 grain microstructure is
deemed sufficient.

4.2. Constitutive parameter calibration for AZ31 alloy

Single crystal data for the AZ31 alloy is not generally available in the literature. Hence, the crystal plasticity constitutive
parameters are calibrated from experimental data for polycrystalline AZ31 alloy. Starting with the calibrated parameters for
pure Mg in Section 3, only necessary adjustments are made for the AZ31 alloy. For polycrystalline microstructure simula-
tions, it is important to add the effect of the GNDs to the athermal and thermal shear resistances in Eqs. (8). Experimental
data for the calibration is taken from (Khan et al., 2011) for quasi-static strain rate and room temperature conditions. The
uniaxial compression test normal to the extruded sheet plane direction (ND), which suppresses the formation of commonly
Fig. 3. (a) 3D statistically equivalent polycrystalline microstructure reconstructed from EBSD-FIB sectioning images of Mg alloy AZ31 and (b) pole figure
showing initial texture assigned to the 233 grains microstructure.
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study on the number of grains in RVE.

Table 3
Crystal plasticity constitutive parameters for the alloy AZ31 with modified parameters from pure Mg to account for different chemical composition; subscripts
bas; pri and pyr correspond to basal, prismatic and 2nd order pyramidal slip systems respectively.

C11 (GPa) C12 (GPa) C13 (GPa) C33 (GPa) C44 (GPa)

59.40 25.61 21.44 61.6 16.4

m _c0 (s�1) r

0.02 0.0023 0.25

ðsa�;0Þbas
(MPa) ðsa�;0Þpri

(MPa) ðsa�;0Þpyr
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observed f10 �12g tension twins, is selected for validation of the dislocation glide model. The resulting constitutive param-
eters are listed in Table 3.

Fig. 6(a) compares the results of CPFE simulations with experiments in (Khan et al., 2011) for the AZ31 alloy. For refer-
ence, results of simulations and experiments for single crystal Mg (Obara et al., 1973) are also plotted in Fig. 6(a). The poly-
crystalline AZ31 simulations have reasonable agreement with experiments. In comparison with single crystal magnesium,
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Fig. 7. (a) Schematic of boundary and loading conditions; and distribution of (b) local stress and (c) geometrically necessary dislocation (GND) density in
deformed polycrystalline AZ31 at 6% strain.
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the polycrystalline alloy exhibits a lower hardening rate (slope). This is primarily due to the effect of texture. Even with a 15�
misalignment between the c-axis and loading direction, the basal hai Schmid factor corresponding to the easy deformation
mode, can reach a value >0.2. Fig. 6(a) also shows simulation results with the contribution of GNDs excluded from slip sys-
tem resistance. For this case, the last terms in Eq. (18) are removed. The comparison shows that GNDs result in a slight
increase in the work hardening rate and macroscopic yield stress. This is due to the fact that GNDs only tend to accumulate
close to grain boundaries where the plastic strain incompatibility occurs. Only the local stress is primarily enhanced at these
locations. Variation of the highest basal hai system Schmid factor as a function of the c-axis misorientation from loading
direction is shown in Fig. 6(b). Due to the low activation stress and hardening rate of basal slip in these grains, basal hai slip
is activated. This results in lower macroscopic yield stress and hardening.
4.3. Analysis of CPFEM simulation results for polycrystalline AZ31

Stress and GND density distributions in the polycrystalline microstructure resulting from the CPFE simulations are ana-
lyzed in this section. The difference in the basal hai Schmid factor between neighboring grains leads to incompatibility
induced GND concentration at grain boundaries. The loading and boundary conditions are shown in Fig. 7(a), while
Fig. 7(b) and (c) depicts the contour plots of the von Mises stress and total GND density at 6% strain respectively. Difference
in the slip system deformation resistances or CRSS and hardening rates, result in locally anisotropic behavior for these hcp
alloys. Hard grains are nearly hc þ ai oriented with their ½0001� crystal orientation close to the loading axis. Soft grains on
the other hand primarily have the hai type slip on basal planes. The stress and GND density concentrate close to the grain
boundaries, especially near those shared by hard and soft grains with large misorientations. Fig. 8(a) and (b) shows plots
of the loading direction true stress and total GND density respectively, along a horizontal line A–A0 through the middle
section of the microstructure in Fig. 7(b). The line passes through soft-hard grain-pairs that see large gradients in the stress
and GND values across the microstructure, with concentrations close to grain boundaries. In the soft grain X, the highest
Schmid factor for basal slip systems is 0:4287, while that for the hc þ ai slip systems is 0:2991. Consequently basal slip
dominates plastic deformation in the soft grain X, resulting in lower stresses than in other grains. In contrast, in the hard
grain Y the highest Schmid factor for basal slip systems is 0:1493, while that for the hc þ ai slip systems is 0:4864. This causes
dominant hc þ ai slip and high local stresses due to high yield stress and hardening rate of the hc þ ai systems. The large dif-
ferences in slip-system flow rates between adjacent grains also cause crystal lattice curvature due to plastic incompatibility
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near the X–Y grain boundary leading to GND accumulation in Fig. 8(b). For a soft-hard grain pair, GNDs concentrate in the
soft grain (Fig. 8(b)), while the peak stresses occur in the hard grain (Fig. 8(a)). The Schmid factor of the last two grains along
A–A0 are similar and hence the stresses and GNDs do not exhibit concentration at their boundary. The stress concentrations
at the soft-hard grain boundaries are responsible for twin nucleation, studied next.
5. Modeling micro-twin nucleation in polycrystalline microstructures

In this paper, twin nucleation modeling focuses on f10 �12g type twins, which are the most commonly observed twins in
magnesium alloys. The f10 �12g type twins usually occupy much higher volume fraction than other twins and affects the
hardening rates. Consequently, other types of twins are neglected in this study. A dislocation-assisted mechanism is assumed
for the heterogeneous nucleation of f10 �12g type twins. It involves non-planar dissociation of a sessile hc þ ai lattice dislo-
cation into n layers of glissile twinning dislocations, leaving behind a residual sessile stair-rod partial dislocation for conserv-
ing the Burgers vector. Analytical studies based on elastic dislocation theory and atomistic simulations using molecular
dynamic in (Ghazisaeidi and Curtin, 2013) have shown that such a dissociation process can occur under a sufficiently large
applied shear stress on a 2nd order pyramidal hc þ ai dislocation system f�12 �13g h1 �212i, schematically showed in Fig. 9. The
corresponding dislocation reaction is expressed as:
Fig. 9.
ð1 �102Þ
bini ! btw þ br ð35Þ
where bini ¼ 1
3 h�12 �13i is the Burgers vector of the initial hc þ ai dislocation that dissociates into a twin partial dislocation

with a net Burgers vector btw and a stair-rod dislocation with a Burgers vector br . The twin partial dislocation is
btw ¼ nsh10 �11i where s is the magnitude of shear on each layer and n is the number of twin layers. DFT calculations and
atomistic simulations in (Ghazisaeidi and Curtin, 2013) have shown that n must be larger than 6 to be stable, and a value
n ¼ 8 is taken in this study.
Crystallographic lattice systems for 10 �1 2 twin nucleation: (a) hc þ ai dislocation on ð1 1 �2 �2Þ plane with line direction along ½4 �2 �23� dissociating onto
plane, (b) hc þ ai dislocation dissociation scheme on 10 �12 twin plane.



Table 4
Energy prefactors for Mg (unit: mJ/mm2).
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Following (Ghazisaeidi and Curtin, 2013; Capolungo and Beyerlein, 2008), the present work extends the energetics frame-
work using 3D elastic theory of dislocation to propose a twin nucleation criterion. Prior to dissociation, the initial energy of
the system is given by the self-energy of the sessile hc þ ai dislocation as:
Eini ¼
L

4p
Ke

iniðb
e
iniÞ

2 þ Ks
iniðb

s
iniÞ

2
h i

ln
R
r0

ð36Þ
Kini is the elastic energy prefactor for dislocation, which is calculated using the integral method in (Hirth and Lothe, 1982).
The superscript e and s refer to variables related to edge and screw dislocations respectively. Values of all energy prefactor

are listed in Table 4. The scalar b denotes the magnitude of the Burgers vector, i.e. b ¼ bk k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðbeÞ2 þ ðbsÞ2

q
. R is the outer

radius of the dislocation core taken as 1 lm, while r0 is the inner radius taken as the atomic distance on basal plane, i.e.
r0 ¼ 3:196 Å. L is the initial length of hc þ ai dislocation and is assumed to be 100nm. The post dissociation energy of the sys-
tem is given as:
EF ¼ Etw þ Er þ Eint þ Efault �Wex ð37Þ
where Etw is the self-energy of the twinning dislocation loop, Er is the self-energy of the stair-rod dislocation, Eint is the inter-
action energy between the twinning dislocation and stair-rod dislocation, Efault is the stacking fault created by the twinning
dislocation, and Wex is the applied external work.

Following the dissociation scheme in Fig. 9(b), the self-energy of twin partial dislocation Etw is evaluated by summing the
line energy of front segment, transverse segment and interaction energy between transverse segments as:
Etw ¼
1
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ð38Þ
The superscripts ft and tr refer to the front and transverse segments of the twin partial dislocation loop. The length of the
front segment of the twin partial dislocation is assumed to be the same length L as the initial hc þ ai dislocation. L is the vec-
tor representation of the initial hc þ ai dislocation line. The length of transverse segment of twinning dislocation is taken as
the dissociation distance d. ntr is the unit vector of the transverse segment of twin partial dislocation. The first part of Eq. (38)
corresponds to the dislocation line energy of twin partial dislocation, while the second part corresponds to the interaction
energy between its two transverse segments. No transverse segments are considered for the sessile stair-rod dislocation, and
its self-energy is given as:
Er ¼
L

4p
Ke

rðb
e
rÞ

2 þ Ks
rðb

s
rÞ

2
h i

ln
R
r0

ð39Þ
The formation of the twin partial dislocation and stair-rod dislocation is assumed to govern the twin nucleation criterion:
Eini P Etw þ Er ð40Þ
At d ¼ 0 and conditions of isotropy, this condition reduce to the classic Frank’s rule for dislocation dissociation:
b2

ini P b2
tw þ b2

r . However actual dissociation requires a minimum energy at a finite d, i.e. the reaction products must be spa-
tially separated as a result of internal repulsive forces. The interaction energy Eint is given as:
Eint ¼ �LKs;ft
tw
ðbs;ft

tw � n
ftÞðbs

r � n
rÞ

2p ln
d
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� LKe;ft

tw
ðbe;ft

tw � nftÞ � ðbe
r � nrÞ

2p ln
d
r0
þ
ðbe;ft

tw � nftÞ � d
h i

ðbe
r � nrÞ � d

� 
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8<:
9=; ð41Þ
where nft is the unit vector of the twin partial front segment and nr is the unit vector of the stair-rod dislocation. The first part
of Eq. (41) corresponds to the interaction between stair-rod dislocation with the screw component of the twin partial front
segment, while the interaction with the edge component is accommodated in the second part.

The formation of twin lamella introduces a stacking fault energy Efault , which has a counter effect to the interaction energy
and tends to have the two dissociation products stay close to each other. This is expressed as:
Efault ¼ mtwdL ð42Þ
where mtw ¼ 189 mJ=mm2 is the f10 �12g twin boundary energy. The external work done on twins under a given shear stress
stw is:
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Wext ¼ stwbtwdL ð43Þ
After dissociation, a stable configuration can be reached at a separation distance ds, when the final energy EF has reached a
saddle point under an applied stress, as shown in Fig. 10. The equilibrium separation distance ds can be analytically evaluated
from the conditions:
@EF

@d
¼ 0;

@2EF

@d2 P 0; d ¼ ds ð44Þ
Stability of the dissociated components needs to satisfy the condition:
Eini > EF d ¼ ds; stwð Þ ð45Þ
such that the equilibrium separation is energetically favorable and the process is irreversible.
Capolungo and Beyerlein (2008) have argued that there should be a minimum separation distance requirement on ds,

below which the elastic calculation of the dislocation self-energies are not reliable. Also, below this the cores of the initial
dislocation, stair rod, and twinning partial dislocations are not distinguishable. Thus the minimum stable separation distance
is assumed to be:
ds > 2r0 ð46Þ
Upon satisfying this criterion, it is considered that the dissociation has successfully created the twin partials and faulted
areas, and thus a twin nucleus is formed.

5.1. Implementation of the twin nucleation criteria

The three Eqs. (40), (45) and (46) contributing to the twin nucleation criterion are examined for each of the six f10 �12g
twin variant planes. The dissociation energy components are evaluated from Eqs. (37)–(39) and (41)–(43). For estimating the
energy terms, it is necessary to know characteristics of each dislocation segment, viz. the dislocation line length L, the screw
and edge components of the initial dislocation line, stair-rod dislocation and twin partial loop. These are estimated from
known initial dislocation line direction and dissociation configuration, shown in Fig. 9. For a dislocation with unit line vector
n and Burgers vector b, the edge and screw components of its Burgers vector can be found as:
be ¼ b� nð Þ � n and bs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bk k2 � be2

q
ð47Þ
where n is the slip plane normal. Eq. (47) is used to compute the screw and edge components of the hc þ ai dislocation, twin
partial and stair-rod dislocations in the energy equations. The stable separation distance ds in Eq. (44) is derived to be:
ds ¼
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For each twin variant, the probability of dissociation from six f�12 �13g h1 �212i hc þ ai lattice dislocations is considered.

Using Eqs. (40), (45) and (46), the criteria governing the formation of a twin nucleus on any twin variant is given as:
Eini P Etwðd ¼ 0Þ þ Er and
Eini > EFðds; stwÞ 8ds > 2r0

ð49Þ
5.2. CPFEM based simulations and studies on micro-twin nucleation

Simulations of polycrystalline microstructures with the CPFE model with a posteriori evaluation of the micro-twin
nucleation criteria are conducted in this section to validate the model and for insights on the underlying mechanisms.
Comprehensive studies on the effects of microstructural statistics on micro-twin nucleation in Mg alloys have been per-
formed in (Beyerlein et al., 2010, 2011). Their statistical analysis involves large experimental data sets (approximately
2340 grains) collected from 42 EBSD scans at different locations of the sample using an FEI XL30 field emission gun scanning
electron microscope (FEG-SEM) at 20 kV with a 1 lm step size. The data is analyzed using an automated twin characteriza-
tion method (Marshall et al., 2010). In the present study, the DREAM.3D code (Groeber and Jackson, 2014) is used to generate
two statistically equivalent virtual microstructures (SEVM) with the same distribution of grain size, grain orientation and
grain boundary misorientations as in (Beyerlein et al., 2011). The two SEVMs contain 255 and 273 grains respectively, for
which the grain size, highest twin Schmid factor and misorientation distributions are compared with the experimental
set in Fig. 11(a)–(c) respectively. The pole figure for a 255 grain SEVM is also provided in Fig. 11(d) to show the initial texture.
For CPFEM simulations, the two SEVMs are discretized into 149,023 and 150,881 constant strain tetrahedron (CST) elements,
respectively. While the statistics of the SEVMs are generally consistent with that of the experimental data, a small difference
is observed due to the relatively small number of grains represented. The two virtual microstructures are used to check the
effect of slightly varying statistics on the convergence of simulation results with respect to deformation and twins.
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The SEVMs are subjected to compression loading in the transverse direction to the extrusion sheet plane direction (TD).
For this direction, nucleation of f10 �12g extension twins are observed in experiments. The response is expected to be signif-
icantly different for this and other (e.g. ND) directions due to plastic anisotropy in the hcp alloys. A constant strain rate
_� ¼ 0:001=s is applied at a constant temperature T ¼ 300 K. The CPFEM simulations are aimed at predicting the twin nucle-
ation sites and studying their distribution in the polycrystalline microstructure, e.g. the characteristics of grain size, orien-
tation, grain boundary misorientation, etc. Only early stages of deformation, up to 3% strain are considered in these studies,
for which experimental data is available.

5.2.1. Identification of twin nucleation sites in polycrystalline microstructures
Fig. 12 shows a SEVM section with a map of twin nucleation site distribution at 3.0% strain. Dark regions correspond to

those that meet the twin nucleation criteria in Eqs. (49). Grain boundaries are characterized in CPFE by the misorientation
angle that is calculated using Eq. (50) between each adjacent grain pairs (Groeber et al., 2008b; Xie et al., 2004) as:
Fig. 12.
misorie
h ¼ min cos�1 trðgBg�1
A OÞ � 1
2

� ����� ���� ð50Þ
Here gA and gB are the orientation matrices of adjacent grains A and B respectively and O corresponds to a crystal symmetry
operator for hcp crystals. Details of this method are given in (Xie et al., 2004). It is possible to characterize twin nucleation
sites within each grain relative to different grain boundaries, enabling direct comparison with experiments. Results of CPFEM
simulations show that the primary nucleation sites are generally close to grain boundaries and triple grain boundary junc-
tions. This observation is consistent with experimental and simulation results reported in (Beyerlein et al., 2011; Abdolvand
and Daymond, 2013). Atomic scale simulations in (Wang et al., 2009) have suggested that grain boundaries are most suscep-
tible to twin nucleation for polycrystalline Mg alloys due to dislocation pile-up induced stress concentration and existence of
defect structures. Even with a uniform initial defect distribution, the constitutive model in the CPFEM simulations predicts
twin nucleation sites that are observed in experiments. This suggests that twin nucleation depends on such factors as high
local stress and local defect structures like grain boundaries defects (GBDs) discussed in (Beyerlein et al., 2011; Wang et al.,
2009) and sessile hc þ ai dislocation in this work. The latter defects may dissociate into twin partials under local high stres-
ses, leading to twinning. Without such defects the stress levels required to trigger homogeneous twins are extremely high,
close to the theoretical yield stress level. The simulation results show some diffused twin-nucleation regions due to the fact
that twin propagation is suppressed in this work.

5.2.2. Effect of grain size
Fig. 13(a) plots the histogram of twinned grain number fraction as a function of grain size at 3% strain. A grain that con-

tains at least one CST element where the twin nucleation criteria (49) are satisfied is categorized as a twinned grain. The
number fraction is calculated as the ratio of number of twinned grains to the total number of grains in a size range. The sim-
ulated results for both the SEVMs are in good agreement with experimental results in (Beyerlein et al., 2011). Smaller grains
A section of the virtual microstructure with a contour map of twin nucleation regions at 3% strain. Grain boundaries are color-mapped according to
ntation angles.
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show a lower population of nucleated micro-twins. Meyers et al. (2001) have suggested as possible reason, a larger critical
stress is necessary for twin activation in smaller grains (similar to the Hall–Petch effect for dislocation slip). However size
effect is not explicitly included in the present twin nucleation model. Abdolvand and Daymond (2013) have discussed an
alternative reason by correlating grain sizes with the number of adjacent grains. Bigger grains have larger grain boundaries
and hence more adjacent neighbors. An increase in the number of neighbors raises the probability of finding soft-hard grain
boundaries, on which stress concentrations are likely to trigger twin nucleation. Also the probability of finding triple junc-
tions on the grain boundary increases with additional neighboring grains. From this study it can be inferred that for smaller
grains, crystallographic orientation has a major influence on twinning, while for bigger grains the soft-hard grain boundaries
dominate the twin nucleation process. Grain size does not have a direct effect on twin nucleation. Subsequent studies on
crystallographic orientations and grain boundary are performed to investigate this conjecture.

5.2.3. Effect of crystallographic orientation
The Schmid factor of each slip or twin system may be used to represent how favorable is a grain orientation for accom-

modating plastic shear. The twin variant with a high Schmid factor will have high resolved shear stress and is easier to acti-
vate. The histogram of the number fraction of twinned grains at 3% strain as a function of the highest Schmid factor is plotted
in Fig. 13(b). The highest twin Schmid factor in the x-axis of Fig. 13(b) is defined as the maximum Schmid factor among the
six 10 �12

� �
twin variants. Following (Abdolvand and Daymond, 2013), this is computed as:
Fig. 13.
highest
SFa ¼ sa : r
jjrjj ð51Þ
where sa ¼ma � na represents the Schmid factor of a slip or twin system a and r is the Cauchy stress tensor. Depending on
whether r is the local or far-field applied stress, SFa can represent the local Schmid factor (LSF) or the geometric Schmid
factor (GSF). The LSF represents the effect of local stresses for a region inside a grain to twin. The GSF, on the other hand,
refers to the effect of average stress for a polycrystal aggregate to twin. The comparison experiments in (Beyerlein et al.,
2011) and consequently the simulations use GSF to interpret results in Fig. 13(b).

In general, good agreement is seen for both SEVM simulations with the experiments. The results show that grains with
high GSF has a greater probability of nucleating a twin. However, even with a negative GSF, grains have a small probability of
nucleating a twin due to locally high stress distributions. Even though some soft grains are not orientated for twin activation,
the local stress state at a grain boundary with a hard grain can be favorable for twin nucleation. Consequently the local Sch-
mid factor (LSF), computed using the local stress tensor at each integration point of an element, is plotted in Fig. 14. The
results show a clear trend that points with a high LSF have a much higher twin nucleation probability, consistent with
the Schmid law (Schmid and Boas, 1950).

Two key observations may be made from Fig. 14(a). The first is that not all locations with 	0.5 LSF will twin, as the mag-
nitude of twin system resolved shear stress may not be high enough for nucleation, especially for points located in the mid-
dle of a big grain. The second observation comes from comparing the distribution of GSF in Fig. 11(b) with that of LSF in
Fig. 14(a). The number fraction of integration points with LSF 	0.5 is much higher than that of grains with GSF 	0.5. This
is primarily due to grain boundary constraints arising from anisotropy of different slip systems in hcp polycrystals. Difference
in the extent of basal slip (planes of low CRSS) in neighboring grains with large misorientation can give rise to high local
stress near the grain boundary, thus triggering non-basal deformation modes such as twinning and hc þ ai slip. The evolution
of LSF on twin systems and basal systems are plotted in Fig. 14(b) and (c) respectively. At 0:1% strain the material is in the
elastic range and no dislocation slip or twin system is activated. Since elastic anisotropy of Mg alloys is relatively small in
comparison with plastic anisotropy, the stress state in each grain at 0:1% strain is close to the macroscopically averaged
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stress and hence, the distribution of LSF is similar to that of GSF in Fig. 11(b). At 0:5% strain however, basal slip is activated in
several grains. The local stress state near grain boundaries start to deviate from the macroscopic stress due to the grain
boundary effect, which leads to preferred deformation along the c-axis. This increases the high LSF for twin systems in
Fig. 14(b) and and decreases the high LSF for basal slips in Fig. 14(c). At 2% strain, when basal slip is activated in most grains,
the trend is more pronounced as shown in Fig. 14(b) and (c). The strong influence of grain orientation on twin nucleation is
established in this example. Grains with high geometric twin Schmid factor have a propensity to twin, where locally the twin
activation follows Schmid law.

5.2.4. Effect of grain boundary
Element pairs interfacing at the same grain boundary are grouped with a misorientation measure calculated using Eq.

(50), as depicted in Fig. 12. When an element associated with a grain boundary group has twinned, it is counted as a twinned
boundary. The simulation results are shown in Fig. 15. To be consistent with experimental results in (Beyerlein et al., 2011),
the c-axis misorientation angle between two adjacent grains is used for comparison. The simulations show the same trend as
experiments, viz. the probability of twin nucleation decreases with increasing c-axis misorientation. However, as observed
with simulations in (Beyerlein et al., 2011; Abdolvand and Daymond, 2013), the present CPFE simulations predict a higher
probability of twin nucleation than the experiment. In (Beyerlein et al., 2011) it has been suggested that the discrepancy may
be due to the fact that the experimental data statistics is derived from 2D EBSD sections that are not exactly equivalent to the
statistics of 3D grain boundary structure. Also the lack of twin band propagation in the present model leads to diffusive twin
nucleation behavior due to over-prediction of other nucleation sites in the same grain with deformation. This adds to the
higher values of the number fraction.

In general the misorientation angle alone is insufficient for characterizing the influence of grain boundary on response,
since it does not include the effect of the loading direction. Without this information, it is not feasible to identify soft-hard
grain boundary in hcp crystals. As proposed in (Ghosh and Anahid, 2013; Anahid and Ghosh, 2013), a Schmid factor based
indicator is proposed to characterize the soft-hard grain boundary (soft-hard grain boundary indicator), defined as:
Fig. 14.
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Here SFbasal
max ðiÞ is the maximum Schmid factor among the three basal slip systems in grain i for a given loading direction. Since

soft and hard grains are characterized by high and low basal Schmid factors respectively, a high positive SHði; jÞ > 0 repre-
sents a hard grain i neighboring a soft grain j at a hard-soft grain boundary. Conversely a high negative SHði; jÞ < 0 value indi-
cates a soft-hard grain boundary on the soft grain side. Fig. 16(a) plots the distribution of twinned grain boundaries as a
function of the SHði; jÞ indicator. The number fraction of twinned to total grains shows a monotonic increase with the
SHði; jÞ indicator, from negative to positive values. Clearly, most twins tend to initiate from the hard grain side of a soft-hard
grain boundary. This is because at a soft-hard grain boundary, dislocations tend to accumulate at the soft grain side causing
stress concentration on the hard grain side of the grain boundary (Anahid et al., 2011). Thus for two hard grains with similar
orientations, a higher local stress evolves for a softer neighboring grain, with a higher probability of twin nucleation. Intro-
ducing the Schmid factor-based SHði; jÞ indicator in Fig. 16(a) allows for accounting the side of a hard-soft grain boundary in
characterizing twin nucleation, as opposed to Fig. 15 where the misorientation does not discriminate between sides of the
grain-boundary.

In Fig. 16(b) the number of soft-hard grain boundaries that have SHði; jÞP 0:2 is plotted as a function of the c-axis mis-
orientation angle. The majority of soft-hard grain boundaries lie in the misorientation range 10�–50�. This distribution cor-
roborates observations made in Fig. 15 on a greater propensity of nucleation in the 10�–50� misorientation range. It is
interesting to note that even a low misorientation angle can constitute a soft-hard grain boundary. For example in
Fig. 6(b), even for a 20� c-axis misorientation, the basal Schmid factor is higher than 0.3 and extensive basal slip can be acti-
vated. Therefore this c-axis misorientation can contribute to a hard-soft grain pair. The basal Schmid factor reaches a max-
imum at 45� c-axis misorientation in Fig. 6(b). In the experimental samples, most grains have their c-axis aligned with the
ND direction, for which a high c-axis misorientation angle (P60�) exists between two soft grains with the c-axis rotated in
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opposite directions. These grain boundaries belongs to soft–soft grain boundaries and are unlikely to nucleate twins. This
explains the trend of twin nucleation at low angle grain boundaries, observed in simulation and experiments.
6. Conclusions

This paper develops a physics-based crystal plasticity FE model of dislocation-mediated heterogeneous deformation and
nucleation of 10 �12

� �
micro-twins in single crystal pure magnesium and the polycrystalline alloy AZ31. The image-based

computational model incorporates phenomena from a variety of experimental observations. The constitutive model for crys-
tallographic slip incorporates both the hardening effect from evolution of statistical stored dislocations and geometrically
necessary dislocations at grain boundaries driven by plastic incompatibility. The constitutive model, calibrated from pure
Mg single crystal experimental data under various loading conditions, is effectively projecting strong material anisotropy
in hcp crystals. The 3D CPFE model incorporates polycrystalline microstructures that have equivalent statistics of morpho-
logical and crystallographic characteristics of experimental specimens. It is able to predict the macroscopic stress–strain evo-
lution as well as the microstructural stress and GND distribution that are consistent with experimental observations.

This sets the stage for a micro-twin nucleation model that can predict the nucleation of 10 �12
� �

tensile micro-twins.
When subject to large applied stresses, twin nucleation is assumed to take place under conditions of dissociation of a sessile
hc þ ai dislocation into a twin partial dislocation and a stair-rod dislocation. The nucleation criteria are governed by the
following:

� Initial energy of the system, given as the self-energy of the sessile hc þ ai dislocation, exceeds the sum of the self-energies
of the twin partial and stair-rod dislocation.
� Initial energy should be greater than the energy required to achieve a stable equilibrium configuration after dissociation,

for an irreversible process.
� The dissociation distance should exceed a minimum stable separation distance.

Various CPFEM simulations are conducted to understand the effect of microstructure on twin nucleation. Specifically, the
effect of three important microstructural descriptors viz. grain size, crystallographic orientation and grain boundary misori-
entation is investigated through simulations and validated with experiments. It is found that crystallographic orientation has
a strong influence on twin nucleation. Grains with high twin Schmid factor have a much higher chance of twinning, and
locally twin activation follows the Schmid law. The CPFEM results in general agree well with experiments. The interaction
between neighboring grains and grain boundaries are critical in triggering twins, which tends to nucleate from the hard grain
side of a soft-hard grain pair. In conclusion, the CPFEM model is found to be adequate for capturing heterogeneous deforma-
tion in the Mg family and for identifying local 10 �12

� �
tensile micro-twin nucleation. It forms a good basis for modeling the

twin propagation that will be discussed in a future paper.
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