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Topology Optimization
of Fixed-Geometry Fluid Diodes
This paper proposes using topology optimization to design fixed-geometry fluid diodes
that allow easy passage of fluid flowing in one direction while inhibiting flow in the
reverse direction. Fixed-geometry diodes do not use movable mechanical parts or defor-
mations, but rather utilize inertial forces of the fluid to achieve this flow behavior. Diode
performance is measured by diodicity, defined as the ratio of pressure drop of reverse
flow and forward flow, or equivalently the ratio of dissipation of reverse and forward
flow. Diodicity can then be maximized by minimizing forward dissipation while maximiz-
ing reverse dissipation. While significant research has been conducted in topology opti-
mization of fluids for minimizing dissipation, maximizing dissipation introduces
challenges in the form of small, mesh dependent flow channels and that artificial flow in
solid region becomes (numerically) desirable. These challenges are circumvented herein
using projection methods for controlling the minimum length scale of channels and by
introducing an additional penalty term on flow through intermediate porosities. Several
solutions are presented, one of which is fabricated by 3D printing and experimentally
tested to demonstrate the diodelike behavior. [DOI: 10.1115/1.4030297]

Keywords: fluid diode, Tesla valve, topology optimization, dissipation, projection meth-
ods, Navier–Stokes equations

1 Introduction

Check valves are devices that control flow direction in fluid sys-
tems. They can generally be grouped into three categories accord-
ing to their actuation mechanism: active valves feature moving
parts that are actuated by external forces; passive valves (such as
Domino valves in Ref. [1]) are actuated by fluid motion; fixed-
geometry or no-moving-part (NMP) valves rely not on moving
parts or deformation, but rather utilize fluidic inertial forces to
inhibit flow in the undesirable direction. Passive and fixed-
geometry valves are often referred to as fluid diodes.

This paper studies fixed-geometry fluid diodes with flat-walled
structures (denoted as fluid diode for brevity hereafter), of which
the Tesla valve and diffuser are examples. A Tesla valve (Fig.
1(a)) is composed of a straight and a bowed channel arranged
such that flow in the forward direction is “easy” and flow in the
reverse direction is inhibited [2]. The idea is that the fluid enters
the straight channel in the forward flow case and takes a relatively
straight path toward the outlet port (Fig. 2(a)). In the reverse flow
case, inertial forces drive fluid into the bowed channel as shown
in Fig. 2(b), which is a longer and curved path to the outlet
thereby dissipating significant energy. This makes the required
driving pressure for flow in the reverse direction significantly
larger than that in the forward direction, creating a diode effect. A
diffuser (Fig. 1(a)) is a flow channel with expanding cross section,
which exhibits similar behavior as flow in the direction of the
expansion requires significantly less driving pressure than flow in

the reverse direction. The difference between Tesla valves and
diffusers is the outlet/inlet width. In this work we not only recreate
the Tesla valve, but also create new, quite different topologies,
which we refer to broadly as fluid diodes.

Although fixed-geometry diodes significantly inhibit fluid flow
in the reverse direction, they do not eliminate reverse flow. How-
ever, they offer other advantages over active valves, including
improved manufacturability, robustness, and external power inde-
pendence, and they are capable of handling particle-laden, multi-
phase, and oscillating flows. They are, therefore, employed in a
number of applications: [3] integrated Tesla valve into a flat-plate
oscillating heat pipe to achieve circulatory flow; [4,5] constructed
miniature valveless membrane pumps using Tesla valve as fluidic
rectifiers; diffusers are frequently used in fluid pumps as in
Refs. [6–8].

Significant research on Tesla valves and diffusers has been con-
ducted. Reference [9] analyzed the diodicity (ratio of pressure
drop of reverse flow to that of forward flow) mechanism of Tesla
valve at low Reynolds number and proposed several guidelines on

Fig. 1 Fixed-geometry fluid diodes with flat-walled structures:
(a) Tesla valve and (b) diffuser
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improving Tesla valve; [10] using shape optimization achieved
25% higher diodicity at Reynolds number 1<Re � 2000; litera-
ture on shape optimization of diffuser-type diodes can be found in
(for example) Refs. [11–13].

This paper seeks to design fluid diodes using topology optimi-
zation with finite element method (FEM). Topology optimization
is a systematic approach to optimizing the distribution of material
(or fluid) across a design domain for a given set of boundary con-
ditions and design constraints. Although originally developed for
structural components, topology optimization was extended to
fluid fields in Ref. [14] to minimize dissipation of fluids whose
flow was governed by Stokes equations. Alternate formations
were later proposed in Refs. [15–17] for slow incompressible
flows, Ref. [18] for slightly compressible flows, and Refs. [19–23]
for low-to-moderate Reynolds numbers. Of particular note is the
work of Refs. [24] and [25], which combined Lattice–Boltzmann
(LBM) method with topology optimization framework to design
Tesla-valves featuring conceptually novel design layouts. A key
difference in the proposed work is the use of FEMs and we focus
on aligned inlet and outlet ports of identical size, which facilitates
connecting the diodes in series to enhance system diodicity.

2 Topology Optimization

2.1 Governing Equation. The topology optimization process
begins by discretizing the design domain using finite elements,
herein chosen as quadrilateral elements. Numerical stability is
achieved using Q2-Q1 elements (Taylor–Hood method), where
velocity and pressure are approximated with biquadratic and bilinear
shape functions, respectively (see Ref. [26] for additional details).

The goal is to then determine the local porosity of each finite
element, denoted as ci, with ci¼ 1 indicating the element is a pore
and thus a fluid channel, and ci¼ 0 indicating that the element
contains solid material. The design problem is therefore a binary
programing problem, further complicated by the no-slip condition
being a discrete moving-boundary condition [14,15].

In order to use gradient-based optimization algorithms, the
design variables ci are permitted to take value continuously from
0 to 1 and the discrete no-slip condition is approximated as a con-
tinuous function. This is achieved by treating the solid phase as a
permeable material, thereby allowing flow through the solid phase
and intermediate phases. Reference [14] achieved this using a
Darcy damping force f¼ –au, where a is the degree of local
impermeability, which was then added to the governing Stokes

equations. In the context of Navier–Stokes equations, this yields
the following governing equations:

qðu � rÞu ¼ �rpþ lr2u� aðcÞu (1)

In Eq. (1), the physical meaning of a can be interpreted as local
impermeability and it is related with material porosity c via [14]

aðcÞ ¼ aþ ð�a� aÞ qð1� cÞ
qþ c

(2)

where a is the minimum allowable value of a; �a is the maximum
allowable value, and q is a parameter to control convexity of a(c).
If �a is infinitely large, then Eq. (2) represents a nonpenetrable
solid material. In this work, a ¼ 0, q¼ 105, and �a is set to be a
large number, as described in the following sections.

As for the boundary conditions of the domain, let us examine
Fig. 3 which gives a demonstration of the forward case: inlet is
the leftmost vertical boundary with an arrow pointing in; outlet is
the rightmost vertical boundary with an arrow pointing out; all the
other boundaries are set to be wall with no-slip boundary condi-
tion (u¼ 0 at the wall). In the reverse case, we switch inlet and
outlet while keeping the other boundaries unchanged. In both
directions, the inlet boundary condition is set to be fixed velocity
with parabolic flow profile, and the outlet is prescribed as the ref-
erence pressure (p¼ 0).

2.2 Diodicity Formulation. Performance of fluid diode is
measured by diodicity, which is defined as the ratio of pressure
drop of reverse flow to that of the forward flow while fixing the
flow rate

Di ¼ Dpr=Dpf (3)

An alternative way to define diodicity is to fix driving pressure
and take the ratio of flow rate of two directions. Although theoreti-
cally equivalent, the best way to pose this problem is ultimately
dependent on the target application. In this work, Eq. (3) is used
primarily to match our existing experimental setup as described in
Sec. 4.

Larger diodicity indicates better performance, and therefore we
aim to maximize diodicity under the assumption of the
Navier–Stokes equations. Although the ratio in Eq. (3) could be
used directly as the objective function, it is generally more favor-
able in numerical optimization to choose an objective that takes
the form of a volume integral of an energy function. Reference
[14] proposed minimizing dissipation as the objective function
under a constraint on the fluid volume fraction. Dissipation is
given by

Uðu; pÞ ¼
ð

X

l
2

X
i;j

@ui

@xj
þ @uj

@xi

� �2
" #

þ
X

i

aðcÞu2
i (4)

where the first term of the integrand is viscous dissipation for
incompressible Newtonian flow, and the second term is dissipa-
tion due to an artificial Darcy force.

Dissipation is closely related to pressure drop [14], and there-
fore diodicity as the ratio of pressure drop can be defined using
dissipation. As shown in Fig. 3, the control volume X is selected
in such a way that flows at the upstream cross section S1 and
downstream cross section S2 are fully developed. The steady
momentum equation is given as

qu � ru ¼ �rpþr � s� au (5)

Taking the dot product of Eq. (5) with u and using some other
manipulations

Fig. 3 Demonstration of the control volume X, shown as
dashed line

Fig. 2 Streamline of original Tesla valve (Re 5 300): (a) forward
flow and (b) reverse flow
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u � rp ¼ r � ðpuÞ

u � ðqu � ruÞ ¼ r � ðu 1

2
qu2Þ

u � ðr � sÞ ¼ r � ðs � uÞ � s : ru

we can get the mechanical energy equation

r �
�

u
1

2
qu2

�
¼ �r � ðpuÞ þ r � ðs � uÞ � s : ru� au2 (6)

where s: r u is viscous dissipation. For incompressible Newto-
nian fluid s ¼ l½ruþ ðruÞT�, and

s : ru ¼ lð@iuj þ @juiÞ@jui ¼
X

i;j

l
2
ð@jui þ @iujÞ2 (7)

which is exactly the same as the first term of integrand in Eq. (4).
Therefore, the energy equation can be rewritten as

s : ruþ au2 ¼ r � ðs � u� pu� 1

2
qu2uÞ (8)

Integrating Eq. (8) over the control volume X and employing the
Divergence Theorem gives

U ¼
ð

X
s : ruþ au2 ¼

ð
@X

n � s � u� pðu � nÞ � 1

2
qu2ðu � nÞ

� �
(9)

where the boundary @X is composed of three segments, @X¼ S0

[ S1 [ S2. Due to the no-slip boundary condition on S0, we have

U ¼
ð

S1þS2

n � s � uþ pð�u � nÞ þ 1

2
qu2ð�u � nÞ

� �
(10)

The three terms can be greatly simplified for fully developed flow.
The first term means work done by viscous stress. Since u and n
are either in the same or opposite direction, it vanishes in fully
developed flow

u � ðs � nÞ ¼ 6uðn � s � nÞ ¼ 6usnn ¼ 0 (11)

As pressure is constant along cross-stream direction of fully
developed flow, the second term, which is work done by pressure
drop, can be rewritten asð

S1þS2

pð�u � nÞdS ¼ p1

ð
S1

udS� p2

ð
S2

udS ¼ Dp � Q (12)

where Q ¼
Ð

S1
udS ¼

Ð
S2

udS is the flow rate and Dp¼ p1 – p2 is

the pressure drop between S1 and S2. The third term is interpreted
as mechanical energy convected into the control volume, and its
integral is zero due to the same velocity profiles at S1 and S2.
Therefore, we get the final simplified form

Uðu; pÞ ¼ Dp � Q (13)

Equation (13) simply means that the power dissipated in the con-
trol volume X is equal to the work done by the driving pressure.
Then diodicity can be redefined as the ratio of dissipations

Di0 ¼ Uður; prÞ
Uðuf ; pf Þ

¼ Dpr � Qr

Dpf � Qf
¼ Dpr

Dpf
¼ Di (14)

From Dp�qU2 for fast flow or Dp� lU/L for viscous dominated
flow, we can conclude that if flow rate of forward and reverse

flows are the same, the ratio of dissipations must be bounded, and
Di0 in Eq. (14) can thus serve as objective function. It is worth
mentioning that in practice it is difficult to ensure that flows at the
upstream and downstream cross sections are fully developed, but
this is also not necessary. In this case Di0 � Di.

2.3 Artificial Flow Penalty. The material interpolation
scheme of Eqs. (1) and (2) allows fluid to penetrate elements hav-
ing ci< 1, where ci¼ 0 indicates the element is wholly solid and
0< ci< 1 indicates the element contains a (fictitious) mixture of
solid and void phases. Such behavior is often referred to as artifi-
cial flow [27]. In past work where the design objective is to mini-
mize dissipation, solutions naturally tend toward 0-1 (solid-void)
distributions of material when using this interpolation scheme
with a relatively large magnitude of �a. In the case of maximizing
diodicity, however, initial results revealed that the algorithm
designed small pockets of intermediate porosities in regions pri-
marily accessed by the reverse flow case, thereby maximizing dis-
sipation for the reverse flow case without significantly impacting
dissipation in the forward flow case.

To eliminate these small pockets of intermediate porosities, a
penalty term is added to the objective function to penalize the
flow through the solid and intermediate phases in the reverse
direction. This penalization is not needed in the forward flow case
as minimizing forward dissipation naturally discourages artificial
flow in the considered problems (although it is noted this may not
always be the case [27]). Let us define a nondimensional Darcy
term F* as

F� ¼
1

L2

ð
X

a � jjurjj2
�aU

(15)

where U is characteristic velocity (average velocity at the inlet)
and WF is a weighting coefficient. The objective function is then
posed as minimizing ð1=Di0 þWF � F�Þ. As F* is scaled to the
similar order of magnitude as Di0 � 1, the coefficient should be
chosen as WF� 1 (WF¼ 3 is used in this work).

2.4 Minimum Length Scale Control. Unlike topology opti-
mization for minimum dissipation [14,15], the maximum diodicity
design problem tends to prefer multiple small channels that are
utilized in the reverse flow case. This leads to an issue of solution
mesh dependence, where smaller channels develop as the finite
element mesh is refined, similar to maximum stiffness problems
in solid mechanics [28]. Projection methods, originally proposed
in Ref. [29], have a demonstrated capability of circumventing this
issue by imposing a minimum length scale on designed features.
Herein we impose the length scale on the void phase to constrain
channel sizes to a minimum radius of Rmin, and the projection
method then mimics the fabrication process of etching [30,31].
This is achieved by introducing a set of variables / that serve as
the independent design variables for the optimization problem.
These variables, located at the element centroids herein, are then
mapped radially onto the finite element space to determine topol-
ogy, making element porosities a function of these independent
variables cð/Þ. We utilize the formulation in Ref. [31] which,
adjusting for the fact that the traditional topology optimization
variable q means relative density and thus q¼ 1 – c, is given as

c ¼ 1� expð�b � wð/ÞÞ þ wð/Þ � expð�bÞ (16)

where wð/Þ are the filtered (averaged) design variables within a
distance Rmin of the element centroid, weighted according to
standard linear distance weighting functions [32], and b is the reg-
ularization parameter chosen here as b¼ 10 and kept constant fol-
lowing [33]. We note that a similar effect can be achieved using
the erode filter of Ref. [30], which subtracts wð/Þ from unity
before passing it through the Heaviside function. Complete details

Journal of Mechanical Design AUGUST 2015, Vol. 137 / 081402-3

Downloaded From: http://mechanicaldesign.asmedigitalcollection.asme.org/ on 09/30/2015 Terms of Use: http://www.asme.org/about-asme/terms-of-use



of the employed projection methodology are provided in
Ref. [31].

2.5 Optimization Formulation. In summary, the topology
optimization design problem is stated formally as follows:

min : 1=Di0 þWF � F� (17a)

s:t: : qðuf � rÞuf ¼ �rpf þ lr2uf � aðcð/ÞÞuf (17b)

r � uf ¼ 0 (17c)

qður � rÞur ¼ �rpr þ lr2ur � aðcð/ÞÞur (17d)

r � ur ¼ 0 (17e)

0 � / � 1 (17f )ð
X

cð/Þ � Vmax �
ð

X
1 (17g)

where Vmax is the maximum allowable porosity in the design
domain. This problem is solved using the method of moving
asymptotes (MMA) introduced in Ref. [34].

It is worth noting that that the choice of Vmax has a large influ-
ence on solutions when solving the traditional minimum dissi-
pated power problem, and larger magnitudes of this variable lead
to smaller magnitudes of dissipated power. When maximizing
diodicity, however, solutions must contain some solid material in
order to create a diode effect, and thus solutions are less depend-
ent on the choice of Vmax, provided it is sufficiently large. While
ideally one could simply relax this constraint, the optimizer tends
to remove all material within the first few iterations when doing
this, as open channel flow is a local minimum. We therefore chose
Vmax¼ 0.8 for all examples, and note that this constraint is not
always active in the considered examples. Of course one may also
prefer to use a smaller Vmax if lower fluid volume fractions are
desired.

2.6 Optimization Parameters. It is useful to discuss results
in terms of the Reynolds number occurring at the inlet of the
design domain. Reynolds number is defined as the ratio of inertial
to viscous effects and is given as

Re ¼ qU2

lU=L
¼ qUL

l
(18)

Although diodicity typically increases with Reynolds number as
inertial forces become very large, accurate solution of the
Navier–Stokes equation becomes challenging and computation-
ally prohibitive for very large Reynolds number. In this study, we
focus on solving the problem for cases of 100�Re � 300, which
we have found sufficient to generate significant diodicity effects
without encountering challenges in solving the Navier–Stokes
equations. It is worth mentioning that local Reynolds number
within optimized topologies may be larger than the inlet Reynolds
number, as channel width at some positions may be quite small.
This serves as additional motivation for restricting the overall
Reynolds number to be below 300. All asymptote parameters in
MMA are chosen as discussed in Ref. [33].

It is well known that the magnitude of the permeability variable
�a may influence the final solution. If chosen too small (artificial),
flow is too large through the solid phase, and if chosen too large,
the algorithm may converge to a low quality local minimum. Let
us define the Darcy number as the ratio of viscous force to Darcy
damping force as follows:

Da ¼ lU=L

�aLU
¼ l

�aL2
(19)

The variable �a can then be computed from Da. Following standard
continuation strategies in Refs. [14,15], Da is decreased gradually
as the optimization progresses from a relatively large value to a
sufficiently small one (Da� 10�5).

3 Examples and Discussion

3.1 Reproducing the Tesla Valve. The first example we con-
sider is the pentagon design domain with inclined inlet and hori-
zontal outlet shown in Fig. 4(a), meant to answer the interesting
question of whether we can reproduce the Tesla valve using the
proposed approach. As previously mentioned, in this and all fol-
lowing examples, inlet flow conditions are prescribed to be fully
developed flow with parabolic velocity profile and the outlet pres-
sure is set to a reference pressure of p¼ 0.

The optimal solution found using topology optimization is
shown in Fig. 4(b) using a relatively large minimum channel
length scale as shown in the figure. The result clearly resembles
the original valve design by Nicola Tesla (Fig. 1(a), also Ref. [2]).
Figures 4(c) and 4(d) display solutions using two different finite
element discretizations: a coarse mesh with element size L/6 and a
refined mesh with element size L/20 (an order of magnitude more
elements). The refined mesh has smoother boundaries but the
same overall topology when using the same prescribed (relatively
large) minimum length scale of the channel. In the case where this
length scale is relaxed, and smaller features are permitted to form,
more intricate solutions will lead to improved diodicity at the cost
of larger pressure drop. One could perhaps constrain pressure

Fig. 4 Reproduction of the Tesla valve created using topology
optimization (Re 5 100; Da 5 4.4 3 10–7; WF 5 0; Rmin 5 0.25 L).
The white circle shows projection diameter and the red lines
represents streamlines of reverse flow. (a) Pentagon design do-
main with inclined inlet and outlet. (b) Optimization result using
projection method on fluid phase. (c) Demonstration of mesh
independency of projection method. Projection radius: L/5;
mesh size: L/6 (left) and L/20 (right). Fig. 5 Demonstration of the rectangular design domain
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drop without length scale control to recover the Tesla valve
design, although this is not performed here.

3.2 Design of Diodes With Aligned Inlet and Outlet. The
next design examples consider the case of inlet and outlet chan-
nels being aligned, as shown in Fig. 5, with symmetry employed
as indicated by the highlighting. We also relax the minimum
length scale constraint by setting c ¼ /. Various aspect ratios of
l:h are considered. The requirement of aligned flow channels
makes designing a diode more challenging, but also facilitates
placement of diodes within a straight flow system or serially com-
bining them in a compact manner to enhance diodicity. Of course
the original Tesla valves could also be used in series as shown in
Refs. [24] and [25], which would lead to a simpler topology with
larger pressure drops but also smaller diodicities.

Figure 6 gives topology-optimized solutions for several differ-
ent aspect ratios. Although the diode designs change with aspect
ratio, they all utilize common features in the designs. These
include systems of looped pipes, as used in the original Tesla
valve, and objects placed in the center of the main flow channel
that feature a smooth forward end and a wall-like feature on the
back end, reducing drag in the forward flow case and inhibiting
flow in the reverse flow case. We note that in some applications,
such as Ref. [3], it is favorable to adopt long fluid diodes that can
also serve as flow channel. The solution in Fig. 6(c), found using a
domain aspect ratio of 9:3, may be useful in such applications.

The streamlines for the forward and reverse flow of the solution
in Fig. 6(c) are shown in Fig. 7. It is clearly seen that the fluid
takes a subtly winding path in the forward direction. This is in
contrast to the reverse case where the fluid is continuously steered
by inertial forces into the smaller, curved side flow channels. The
diodicity of this solution is compared against the original Tesla
valve [2] and later modifications proposed in Refs. [9] and [10]
for different Reynolds numbers in Fig. 8. The topology-optimized
design clearly exhibits larger diodicity, particularly as fluid iner-
tial forces increase with larger Reynolds number.

Fig. 6 Optimization results for different aspect ratio (Re 5 300,
Da 5 3 3 1025, W 5 0.1). (a) Aspect ratio 2:3; (b) aspect ratio 4:3;
and (c) aspect ratio 9:3.

Fig. 7 Streamlines of the optimized fluid diode shown in Fig.
6(c) (Re 5 300, Da 5 3 3 1025, aspect ratio 5 9:3). (a) Forward
flow and (b) reverse flow.

Fig. 8 Comparison of diodicity of channel-like diode and pub-
lished works (simulation result)

Fig. 9 Optimization result with expanding channel (Re 5 300,
Da 5 3 3 1025, W 5 0.1, aspect ratio 4:3). (a) Design domain and
(b) optimization result.

Fig. 10 Streamlines of optimized diffuser-type diode (Re 5 300,
Da 5 3 3 1025). (a) Forward flow and (b) reverse flow.
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3.3 Fluid Diode With Expanding Channel. As a final exam-
ple, we consider a fluid diode with expanding channel, which
could be classified as a diffuser-type diode. The outlet on the right
boundary is increased to double the size of the left channel as
shown in Fig. 9(a). The topology-optimized solution is shown in
Fig. 9(b) and corresponding streamlines in Fig. 10. We again see
that the fluid takes a smooth, slightly curved path in the forward
flow case and gets diverted into the smaller side channels, requir-
ing a sharp turn to reach the outlet, in the reverse flow case. This
combination leads to a large diodicity of 20.

4 Experimental Testing

In order to confirm that the designed device performs as a
diode, the optimized design in Fig. 6(c) was extruded a distance z
to a 3D model and fabricated by 3D printing. Figure 11(a) shows
the specimen, whose interior void space constitutes flow channels
as shown in Fig. 11(b). Both ends of the specimen are connected
to square cross section conduits, and then flow rates and pressure
drops are measured between the two positions marked as red in
Fig. 11(b). The sample was tested three times. In the experiments,
pressure drop was measured with an OMEGA HHP-803/SIL dif-
ferential pressure meter to an accuracy of 6 0.01 psi and flow rate
measurement was achieved with beaker and stopwatch. In order to
reach the designated Reynolds number range and also to yield
measurable pressure drops, a mixture of polyethylene glycol
(PEG) 400 and de-ionized water was used as working fluid with
viscosity 37.6 6 0.1 cP and density 1.05 6 0.03 g/mL at 19.8 	C
measured by a Brookfield LVDV-IIþ PRO viscometer before and
after the testing.

By measuring flow rate and pressure drop of both flow direc-
tions and using interpolation, we can calculate a curve of Diodic-
ity versus Reynolds number as shown in Fig. 12. Although the
specimen clearly exhibited diodelike behavior, the measured
diodicity is smaller than that in Fig. 8. The primary reason for this
discrepancy is that extruded height z of the specimen was

relatively small, thus violating the 2D simplification that assumed
the top and bottom surface walls had negligible influence on the
fluid flow. Additionally, the locations of pressure measurements
were significantly farther upstream and downstream than assumed
in the optimization. A three-dimensional finite element analysis
was performed to evaluate the effect of these differences and the
results are shown by the blue curve in Fig. 13. These simulations
are in good agreement with the experimental results, suggesting
they are the primary drivers for the reduction in diodicity. We
emphasize, however, that the dimensions of the 3D printed sample
(Fig. 11(a)), and particularly the relatively small extrusion height
z to length l ratio, were selected here only to conform to an exist-
ing experimental setup. It is expected that increasing the z/l ratio
would increase the measured diodicity. In the event that a specific
application requires a small z/l ratio, the 2D assumption is no

Fig. 11 Fabricated fluid diode specimen. (a) Geometry for 3D
printing (b) 3D representation of the void (fluid) space for the
experiment, with locations of pressure measurement marked as
red.

Fig. 12 Diodicity versus Reynolds number calculated via inter-
polation of experimental measurements (red curve) and compu-
tational simulations for the three-dimensional extruded sample
with distanced pressure measurement locations (blue curve).
The experimental error bars represent the combination of varia-
tion from three experimental trials and the accuracy of the
instruments.

Fig. 13 Demonstration of the impact of fabrication errors at
Re 5 300. Small perturbations in channel sizes lead to loss in
diodicity, with smaller channel sizes (over deposition of 3D
printed material) leading to a 50% loss in diodicity. (a) Dilation,
Di 5 7.41; (b) Original, Di 5 8.87; (c) Erosion, Di 5 4.24.
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longer valid and one would need to perform the topology optimi-
zation in three dimensions.

Additional sources of discrepancy between the predicted and
experimental measurements may be due to surface roughness of
the 3D printed specimen and manufacturing imperfections. To
estimate the effect of general manufacturing variations, we per-
turbed the design of Fig. 6(c) using erode and dilate filters follow-
ing the idea of Ref. [35] to simulate over and under etching, or in
this case under and over deposition of material. These filters cre-
ated the topologies shown in Fig. 13. Interestingly, varying the
design from the optimized version, by either increasing or
decreasing channel sizes slightly, led to performance losses. Thin-
ning the channels, which corresponds to 3D printed features that
are larger than desired, decreased the diodicity by over 50%. This
emphasizes the importance of including the possibility of such
variations in the problem formulation, referred to as robust topol-
ogy optimization [35–39].

5 Concluding Remarks

The free-form nature of topology optimization was leveraged to
design fixed-geometry fluid diodes. Diodicity was measured by
the ratio of pressure drop when fluid flows in the reverse direction
to pressure drop in the forward direction, or equivalently the ratio
of dissipation of fluid flowing in the reverse direction to dissipa-
tion in the forward direction. The algorithm then essentially
attempts to maximize dissipation in the reverse direction without
significantly increasing dissipation when flowing in the forward
direction.

The topology optimization algorithm was able to recreate the
geometry invented by Nicola Tesla [2] when imposing a large
minimum length scale on the channel size and orienting the inlet
and outlet channels as Tesla did. However, new topologies with
significantly improved diodicity were discovered when relaxing
these restrictions, including cases where inlet and outlet channels
are aligned to facilitate connecting these diodes in series, or to
existing (straight) piping systems. Interestingly, the optimized sol-
utions exhibited similar features of sharp, curved channels that
only become a significant flow channel in the reverse flow case.

The optimized design of Fig. 6(c) was also fabricated with 3D
printing and experimentally tested. Although diodicity was less
than predicted by the 2D approximation, the experimental results
confirmed the specimen behaved as a fluid diode. The discrepancy
was primarily due to the limited extrusion height of the specimen
which was required to conform to an existing experimental appa-
ratus. While these results are promising, a number of challenges
still remain, including optimizing for larger Reynolds numbers
than considered here, where increased inertial forces should fur-
ther amplify diodicity.
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Nomenclature

Da ¼ Darcy number
Di ¼ diodicity
F* ¼ penalty term for artificial flow
h ¼ height of the rectangular design domain
l ¼ length of the rectangular design domain

L ¼ characteristic length (inlet width)
q ¼ material interpolation parameter

pf, uf ¼ pressure and velocity of forward flow
pr, ur ¼ pressure and velocity of reverse flow

Rmin ¼ the minimum length scale (radius) of designed features
Re ¼ Reynolds number
U ¼ characteristic velocity (average velocity at the inlet)

Vmax ¼ maximum allowable fluid volume fraction
(between 0 to 1)

wð/Þ ¼ filtered design variables corresponding to elements
WF ¼ weighting factor of F*

z ¼ extruded height of the 3D printed specimen
a ¼ material impermeability

a; �a ¼ minimum and maximum allowable value of a
b ¼ Heaviside Projection regularization parameter
c ¼ elemental porosity
l ¼ dynamic viscosity
/ ¼ independent design variables
U ¼ total dissipation
q ¼ density of fluid
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